
LM.

G fIA pbIC In~g OIT

TECHNOLOGY
80 10 20 091

..............

RiaiAm J./ PTON

'
V-" 'i:'

IJSTRIBUTON STATEMFNT A
Approved for public relase;

Distribution Un~unnitod

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

**Department of Electrical Engineering and Computer Science
Princeton University
Princeton, N.J. 08750

t tWork supported in part by Office of Naval Research, Gra2

-- -- ,- ,.r e_._W

SOFTWARE PROJECT FORECASTING

Richard A. DeMillo
School of Information and Computer Science

Georgia Institute of Technology

Atlanta, GA 30332
Richard J. Lipton

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, NJ 08750

INTRODUCTION

A characterizing feature of the sciences is that they seek to explain,

describe and predict phenomena. While there are varying degrees of exact-

ness in the sciences (the predictions of physics are of a quantitative

character, different than, say, the predictions of economics) the basis

of scientific activity is rational and objective. This is what distinguishes

economics from astrology -- even though it might be argued that economic andF astrological predictions are equally vague, economic predictions are the

result of rational analysis of evidence. Thus we intend to divide sciences

from non-sciences on the basis of the rational nature of the activities; for

a detailed discussion, see [1].

Let's now look at the problem of "measuring" software. It is evident

from the remaining papers in this collection that aside from a well-founded

concern over methodological issues, the principle aim of studying software

metrics is not the static determination of software properties, but is

rather the scientific prediction of phenomena during the software lifecycle..

Indeed, Perlis, Sayward and Shaw point out (cf. (2)): "The purpose of

software metrics is to provide aids for making the optimal choice... at

several points in the life cycle." They go on to illustrate the nature of

2 N7ZS GA&IDIC AB

unInl u ncedTust fie tion

the decision points.
, By_

Distribution/
How long will it take to produce the software? a IAvai labilitY oe

When will it have to be replaced? _-IAvail and. ODist S pecial

- What are the manpower requirements? Di i

- How will the availability of tool X affect factor Y?

- How close to its resource limits will the system run?

- Will it run reliably?

These are manifestly problems of prediction. As intriguing as the issues

of explanation and description may be -- our ability to usefully model

software is still primitive -- the exigencies of governmental and conumercial

computing demand a reasonable facility in forecasting critical software

project parameters. We will address this forecasting problem in the sequel.

We pretend no well-formed answers here. In fact, our goal is the rather

modest one of pointing out that there is a scientific (although possibly

inexact) component of the problem that is not adequately conveyed by the

term "software metrics": the use of past information to predict the

future of a software system.

ANALOGIES

Inevitably, primitive sciences are compared to physics, the reliable

standard of scientific rigor and success. Of course, inexact sciences fare

very badly in the comparison, but often the reason they fare so badly is

not understood. Physics stands almost alone among the sciences in the

exactness and simplicity of its theories. The price paid is the complexity

of the situations that can be profitably handled by the theories. Predicting

the behavior of complex systems -- particularly those Involving human

3

interactions -- is almost never carried out by deducing from first principles,

that is, from physical theory. Tim Standish (3] points out that most

scientific knowledge is organized so that phenomena at one level can be

explained in terms of (or "reduced to") phenomena at a more basic level;

for example, physical chemistry explains chemical behavior in purely

physical terms. Only rarely, however, is it possible to compose several

such reductions in intellectually manageable fashion. Thus while it is

possible to imagine physical explanations of biological phenomena,

biological explanations of psychological phenomena, and a psychological

basis for social behavior, it is extremely unlikely that there will ever be

a physical theory of social behavior.

Jim Browne is correct: "There are analogies from other sclences."(4].

We even agree that the fundamental issues are predictive and phenomenological.

We differ in the choice of analogies, and we also differ on the role thatI. measurement plays in constructing useful forecasts. It seems very unlikely
that the theory of software forecasting is like physical theory at an

early stage in its developmen.t. We have argued elsewhere (5] that software

exhibits much complexity and ad-hocery, features that cannot easily be

abstracted from real situations or simplified with approximations. The

prediction problem for software is more akin to the corresponding problems

in those disciplines that deal with complex systems; rather than turn to

physics for our methodology, we should turn to the less exact sciences --

fields such as meteorology, economics, political science and even the

j construction industry. These are fields in which the explanatory component

is subjugated to the predictive component primarily because of the extreme

public and social significance of the predictions.

4

Why distinguish at all between explanatory and predictive theories?

After all, predictive and explanatory assertions are logically equivalent.

They both use evidence to convince a listener of an hypothesis. They may

both give "laws" concerning an effect X; the exactness of the laws may

vary from that of the quasi-laws (l] (X is asserted to be present except in

certain exceptional cases) to the more exact statistical laws (X is

asserted to be present in a stated fraction of the observations) to the

mathematically exact physical laws. Predictions and explanations are,

however, distinguished in a fundamental way: in explanatory theories

the hypotheses concern events which are past, while predictions are

hypotheses concerning future events. In logical terms, for an explanation

to establish its conclusion, it must be more credible than its negation.

On the other hand, a prediction must only be rendered more tenable than

the alternatives!

METEOROLOGY

The physical basis of meteorological theory fits comfortably on a

moderately large blackboard. It consists primarily of six equations of.

fluid dynamics which locally predict the state of the atmosphere from

the current state:

STATE(new) = f(STATE(old)).

By observing pressure, temperature and other meteorologically interesting

variables (in fact, only six independent variables and a few thermodynamical

constants are involved) and calculating their rate of change, the state

equations allow extrapolation over short time periods to new, or predicted,

values (see the accounts in [6] or [7]).

* .- - -~A- -N

5

It is amusing that the first attempts at a meteorological theory were

directed toward an explanatory theory of the weather; this was attempted

by ancient Greek philosophers. But predicting the weather in the vicinity

of the Mediterranean Sea is not a very pressing concern. To Europeans a

thousand years hence, however, the state of the weather was a subject of

intense interest -- crops, harvests of fish, and trade routes depended on

the vagaries of the less temperate climate. It is in the transition from

Aristotle's speculation concerning the nature of the winds to the modern

large-scale calculations that give rise to daily forecasts that there is
a lesson for software forecasting.

The first stage in predicting weather most likely took the form of

attempting to codify the "portents" of change: "They.... .were not so much

concerned with explaining why weather happened as they were in predicting

it, and [the early Europeans] gradually built up a huge folklore and

literature of portents -- the unseasonable migration of birds, hibernation

of wild beasts, unusual sexual behavior of farm animals, color of the

sunset,..." ([6), p.128). Such understanding is entirely qualitative,

and although it is tempting to try, building a quantitative, predictive

theory by improving on the portents is not productive. What was needed

in meteorology was, first, a proper concept of primary data. Not until

the middle of the seventeenth century were there means to observe

atmospheric temperature and pressure. Measurements by themselves told

little about climate beyond what was obviously revealed directly by the

observation (e.g., "It's cold out there!") It was after Newton (and

later Bernoulli, Euler and Boyle) that a coherent fluid mechanics began to

emerge.

- II

6

It took nearly two hundred years to get from Bernoulli to the six

equations of state for the atmosphere. These equations are, however,

4 analytically intractable. The only hope of obtaining high quality

quantitative predictions of the weather lay in massive computation. A

proposal made by Richardson in 1922 involved the hand calculation of

such nonlinear systems of equations by numerical techniques that are

close to what is used today (7). Without computers, however, Richardson

could only speculate on the actual mechanism of carrying out the necessary

calculations:

[Richardson] describes a phantasmagorical vision of the
"weather factory" -- a huge organization of specialized
human computers, housed in something like Albert Hall,
directed by a mathematical conductor perched on a raised
pulpit, and commnunicating by telegraph, flashing colored
lights, and pneumatic conveyer tubes... In this fantasy,
he estimated that, even using the newfangled desk
calculators, it would take about 64,000 human automata
just to predict the weather as fast as it actually
happens in nature. Richardson's preface concludes with
a rather wistful but prophetic statement: 'Perhaps
someday in the dim future it will be possible to advance
the computations faster than the weather advances and at
a cost less than the saving to mankind due to the
information gained. But that is a dream' ((6), p.138).

The nearly simultaneous advance of sophisticated numerical analytical

techniques and high speed digital computation allowed the fulfillment of

Richardson's dream in essentially its original form.

The characterizing features of modern meteorological forecasting are

that, first, extensive primary data are gathered, second, accurate micro-

scopic theories of atmospheric behavior are available, and, third the

microscopic prediction -- obtained from the local data -- are pieced

together using massive computation.

7

A DIGRESSION ON MEASUREMENT

Since measurement of atmospheric pressure and temperature enter into

our meteorological analogy, we should digress for a moment to consider the

notion of measurement of software. The remaining papers in this collection

refer to software "metrics". The term metrics refers to "indices of merit

that can support quantitative comparisons and evaluations..." [8]. In

the context of predictive modelling (that is of predicting the future from

the past), it is more convenient to think in terms of observable software

properties -- particularly those that can be numerically characterized and

objectively recorded -- in other words, to think in terms of measurements

instead of metrics. The distinction is not totally pedantic. There is

a rich theory of measurement that guides the development of other models

[9,10,11,12), and most importantly can be used to insure that there is a

precise sense in which hypotheses that are formulated about the measured

quantities are meaningful.

By a measurement is meant the assignment of numbers to represent

properties of material systems; since by a system we mean a collection of

objects or events, the properties of the system are given by relations

between the objects/events. For reasons of intellectual economy a

scientist usually isolates one aspect of the systemto study; that is, he

focuses on one relational system. So, a measurement -- an assignment of

numerals to objects or events according to certain rules [9] -- can be

defined to be a mapping f from a relational system (A,R), where A Is a

set and R is a binary relation defined on A, to a set of numbers. Since

the numbers "represent" the relation, we should insist that:

aRb iff f(a) > fib),

. - .

* -- __ __ _

8

whenever a and b are objects in A. More concisely, measurements are defined

to be homomorphisms that preserve certain basic relations.

Thus, a basic measurement of, say, temperature is obtained by the

assignment of a number by a well-defined rule (e.g., the height of fluid

in a standard thermometer). This homomorphism is not uniquely defined,

however. It is possible -- and common -- to define differing scales for

measuring temperature. The scientifically meaningful statements that can be

made about temperature do not depend on the scale; that is, they remain

valid under rescaling. Just which rescalings are allowed depends on

the properties of the relational system (A,R). Similarly, scale types can

be characterized by the admissible rescalings as summarized in Figure 1 (see [10]).

ADMISSIBLE

TRANSFORMATIONS SCALE TYPE EXAMPLEI
(x) = x absolute census counting

V(x) = ax ratio time interval length
a>O

o(x) = ax+b interval time, temperature
a>O

x - y implies ordinal preference
+(x) >- 0(y)

4' is 1-1 nominal labels

Figure 1. Common Rescalings

Strictly speaking, an empirical statement is meaningful provided its

truth is invariant under an admissible transformation. We can safely

assert tnat 100 degrees C is the boiling point of water, since the statement

.,..

9

is true under the rescaling a = 9/5 and b = 32. It makes no sense to

assert that the temperature on March 15 is twice the temperature on

November 4, since temperature is not defined on a ratio scale -- the

ratio of temperatures depends on the scale and is therefore not

invariant under the rescaling.

As a warm-up, let's look at some empirical statements about software.

I. The length of Program A is at least 100.

II. Program A is 100 lines long.

III. Program B took 3 months to write.

IV. Program C is twice as long as Program D.

V. Program C is 50 lines longer than Program D.

VI. The cost of maintaining Program E is twice that of maintaining
Program F.

VII. Program F is twice as maintainable as Program E.

Statement I does not make reference to a particular scale, so it does not

make sense, whereas Statement II does make sense. Similarly, Statement

III is a perfectly reasonable factual statement. If the expected scales

are provided for Statements IV and VI, they are meaningful, but as

written they are technically meaningless. Statement V, however, refers

to a ratio scale, on which intervals make sense. Finally Statement VII

forms a ratio on an ordinal scale, which is meaningless.

From the standpoint of measurement theory, many of the derived

measurements of software that have been proposed [13] are meaningless.

10

Example 1. Programming Effort Equation

The total effort E in number of man months is

E = 2.7v + 121w + 26x + 12y + 22z -497.

The interpretation of the variables and their scale types are given in

the following table.

VARIABLE INTERPRETATION SCALE

v number of instructions ratio
w subjective complexity ordinal
x no. external documents absolute

y no. internal documents absolute
z size in words ratio

This example illustrates a common shortcoming of current attempts

at fundamental and derived measurements. Not only is the equation

dimensionally inconsistent (no. of documents + no. of instructions +

words + complexity t man-months), it does not rescale: the truth of

the equation cannot be invariant under the required transformations.

Example 2. Another Programming Effort Equation

The total effort E in man-months is

E = 5.2(L**.91).

In this equation, L is the program size in thousands of lines of code, so

that both E and L are expressed in a ratio scale. But the measurement is

not invariant under the transformation L --> aL' and so is meaningless.

i..r.

____ ____ ___ ____ ___11

Example 3. Life Cycle Cost

A basic measurement that does satisfy the requirements of measurement

theory is the equation for life cycle cost in dollars LC, expressed as a

function of the cost in man years, M,

and the average cost per man year, C:

L =MC.

Example 4. Error Seeding

The technique of introducing artificial errors into a program, testing

the program and determining the ratio of seeded to natural errors can be

used to estimate the number of initial errors in a program, by the

equation

N = ST/C,

where N is the estimate of the initial number of errors, S is the total

number of errors sampled, T is the number of "tagged" or seeded errors

and C is the number of errors in common in the counts S, T. Since the

only admissible transformation is the identity, the equation is technically

meaningful.

As a guide to fundamental measurement in software forecasting, measure-

ment theory suggests a more thorough study of the underlying relations to

be measured. In particular, if the underlying mechanisms are to be exposed,

the most basic methodological analyses suggest that it is prudent to at

least determine the scale type first. At least that leads the

investigator to propose and experiment on meaningful hypotheses.

12

REALISTIC FORECASTING GOALS

Examples 1 and 2 of the previous section illustrate a good deal of

what is wrong with current approaches to software metrics. Not only do

the equations suffer from the technical defects cited above, they are also

unlikely candidates for useful laws: they are too simple! The number

and quality of interactions that must take place to produce a software

system mitigate against a forecasting problem that can be easily solved

on a hand calculator. The forecasting models that are the most realistic

are also the most demanding in terms of computation and data gathering.

For example, the controversial world dynamics model of Forrester [14]

requires well over 500 pieces of primary data and massive computations.

By analogy to the meteorological prediction problem, we, therefore,

reject the idea that there can be a single "correct" measurement of

software. Instead, we look for many single measurements to aggregate -

the large number of factors involved mitigate against the simplistic

models cited above; in fact, they necessarily imply that the prediction

problem must be associated with a computer-based solution! That is,

we look for simple microscopic laws which interact in macro effects which

are -- either by necessity or by our lack of knowledge -- beyond human

understanding and by (possibly massive) computation combine them to

obtain a prediction.

There are two relevant approaches to forecasting that deserve our

attention here. The first approach is the classical econometric time-

series approach to forecasting [15]. In this approach one looks for

statistically meaningful patterns in past data and uses these patterns

to predict future patterns. It seems to us that this approach is well-

. . . - - - -"

13

developed and has been applied with some success to certain kinds of

software lifecycle modelling [16].

From the standpoint of basic research, however, the traditional

forecasting approach is not very satisfying, since it is an admission

that the underlying mechanisms have not been understood. Returning to

the meteorological analogy, it is an attempt to extend the portents. But

that seems to be the stage of our current understanding of the software

lifecycle.

The exact approach to forecasting seems to require many more

insights into the various facets of the software lifecycle than we

currently have at our disposal. Rather than wait for the software

equivalent of Newton (or Galileo, for those who believe that we cannot

even measure temperature), we might try to use large-scale computation to

build upon the primary data that we can collect. It should be possible

to partition a wide variety of programming tasks into discrete, classi-

fiable subtasks that are repeated anew for each project. We can imagine,

for example, a catalog of subtasks (such as terminal handlers, hash table

routines, and report writers) which are common in various applications

software. Notice that we do not claim that these are "off-the-shelf"

components -- we merely claim that they must be recreated in approximately

the same form for each new job. This catalog will be quite extensive,

but it will be conceptually simple to structure and use.

The principle data gathering activity is to determine the cost

estimates for each of these subtasks. These costs are influenced by many

factors, including the potential application, the skill and experience of

the programmers and the restrictions imposed by the programming environment.

14

There are many sources for such estimates. First, there is a great deal

of historical data which can be carried forward; after all we do

have considerable experience with software projects and this experience can

be codified. Second, we have expert advice concerning the cost of the

projects. Third, experimentation can be carried out. Fourth, the cost

estimation is from managed projects so feedback can be used to correct

prior estimates.

If the data on the primitive tasks that make up the software system

is reliable, then the task is to "piece together" a forecast of the total
system cost by large-scale computation. By "reliable" we mean that the

measurements have an accurate mean and small standard deviation, since in

that case the Central Limit Theorem [17] guarantees that the overall

estimate will have a small error term (in fact one that grows as the square

root of the total number of terms). It is important to distinguish in

this approach between using standard cost and estimation data and advocating

the use of "standardized software components". Perhaps an analogy to a more

familiar cost forecasting problem will make the point more clearly. To

estimate the cost of a house, a contractor will consult extensive data

sheets on the cost of installing doors (how big?, how many?) and the

hundreds of other basic components of a dwelling. These are not prefabricated

items, they must be constructed completely from basic specifications and

customized for the task at hand, but they are enough alike to permit an

accurate assessment of the expected cost of construction. A cost estimate from

a builder is pieced together from such estimates.

Now, it is entirely possible that this approach requires inordinate

overhead; but there is still room for applying computational power to chip

away at the forecasting problem from historical data. Often, the scale

1*

15

which one uses to assess the software project is even weaker than an

ordinal scale: often all that is required is a measure of cohesion

between software projects. A manager may only need to know whether the

current project is enough like apparently similar projects which have

succeeded (or failed) to justify his decision. In this situation the

computation needed is a similarity analysis of the important project

factors. A large clustering analysis of projected software tasks and

historical data may provide such information [10]. The principle task in

such an endeavor is to isolate the important factors through data gather-

ing and experimentation.

SUMMARY

We have argued that a major use of software metrics is in the forecasting.

problem for software projects. By analogy with weather forecasting, we may

characterize the current state of knowlege in software forecasting as the

gathering of portents.' While these may be useful and sometimes decisive

in project management, they are prescientific and qualitative. Further, it

seems very unlikely that the portents can be developed into a useful

theory of forecasting. To develop scientific forecasting tools, a rational

way of predicting the future from historical primary data is required. It

is also important that the primary data and the measurements used to

obtain it satisfy some basic methodological requirements -- for example,

the hypotheses developed from the measurements should be meaningful in

the sense implied by measurement theory. r-14-

Among the rigorous approaches to the prediction problem we distinguish

the statistical and the exact approaches. We specifically reject the

notion that such complex phenomena as software lifecycles can be dealt with

L M- ~..

16

in a global way using computationally simple "laws". The statistical

approach, seeking to predict future events on the basis of historical

patterns, seems to be an attractive short range approach to the fore-

casting problem. There is certainly an extensive body of theory from

econometrics and re ated areas which can be brought to bear on

software forecasting.\. Unfortunately, the statistical approach is a

recognition that the underlying mechanisms are not understood. We turn,

therefore, to the exact approach. In the exact approach a great deal

of effort is spent in attempting to understand -- or to at least

quantitatively assess -- the microscopic prediction problem. The goal

of the exact method is to be able to apply largescale computation to

many micropredictions to synthesize a quantitative forecast. There may

even be useful aggregations of statistical and exact techniques Which

give forecasting models. In both approaches, data gathering is an

essential activity; it is, therefore, important to settle on the fundamental

measurements to be performed on the software.

REFERENCES

[1) Olaf Helmer and Nicholas Rescher, "On the Epistemology of the Inexact
Sciences," Rand Corporation Report No. R-353, February, 1960.

(2] Alan Perlis, Fred Sayward, and Mary Shaw, Unpublished notes on
software metrics, April, 1980.

[3] Tim Standish, Notes on Software Metric and ADA, January 1980, Las
Vegas, Nevada meeting of ONR Software Metrics Group.

[4] Jim Browne, "A Philosophy and Justification for Empirical Software
Engineering and Software Science," Unpublished Notes 9/13/79.

[5] R. Detillo, R. Lipton and A. Perlis, "Social Processes and Proofs of
Theorems and Programs," Communications of the ACM, May, 1979, pp. 271-280.

[6) Philip Thompson, "The Mathematics of Meteorology," in Mathematics
Today, edited by Lynn Steen, Springer-Verlag, 1979, pp. 127-152.

(7] Molly Gleiser, "The First Man to Compute the Weather," Datamation,
June, 1980, pp. 180-184.

(8] Alan Perlis, Fred Sayward and Mary Shaw, unpublished Notes.

[9] Fred Roberts, Measurement Theory, Addison-Wesley, 1979.

[10] Michael Anderberg, Cluster Analysis for Applications, Academic Press,
1973.

[11] Norbert Weiner, "A New Theory of Measurement: A Study in the Logic
of Mathematics," Proceedings London Math. Society, 1919, pp. 181-205.

[12] D. Krantz, et al., Foundations of Measurement, Vol. 1, Academic
Press, 1971.

[13] Data and Analysis Center for Software, "Quantitative Software

Models, March , 1979.

(14] J. Forrester, World Dynamics, 2nd Edition, MIT Press.

[15] Robert Pindyck, Econometric Models and Economic Forecasts,
Mc Graw-Hill, 1976.

[16] L. Putnam and A. Fitzsimmons, "Estimating Software Costs," Datamatlon,
September, October and November, 1979.

[17] W. Feller, An Introduction to Probability Theory and its Applications,
Vol. I, Wiley, 1968.

